ACS_langmuir
August 20, 2024
Volume 40, Issue 33
Pages 17161-17844
Catalytic Approaches to Tackle Mixed Plastic Waste Challenges: A Review
Plastics are widely used materials in our daily lives and various industries due to their affordability and versatility. The massive production of plastic waste, however, has recently emerged as a pressing environmental concern across all media. To address this, emerging technologies are being explored for the sustainable valorization of postconsumer plastic wastes including thermochemical, physical, and catalytic processes aimed at transforming them into higher value-added products. However, the chemical recycling of mixed plastic wastes poses a formidable challenge due to the diverse array of monomers and catalyst systems involved, each employing distinct mechanisms. Complicating matters further is that contaminants reduce catalytic efficacy, requiring rigorous and labor-intensive separation and purification processes to extract individual plastic streams from practical plastic waste mixtures. Consequently, the majority of such mixtures often end up in incineration and landfills, perpetuating environmental and societal challenges, such as leachate, carbon dioxide emissions, and other air pollutants. This review will introduce current technical developments available for recycling practical plastic waste mixtures through catalytic processes. The current challenges in process performance, low selectivity of the desired products, and catalyst deactivation from the catalysis of plastic waste mixtures are also discussed. Promising approaches to overcome the problems are suggested in future research directions.
- Taeeun Kwon
- Huijeong Jeong
- Mireu Kim
- Sungyup Jung
- Insoo Ro
https://pubs.acs.org/doi/10.1021/acs.langmuir.4c01303
Image created by minjeong Kim / Nanosphere
ACS_langmuir
August 20, 2024
Volume 40, Issue 33
Pages 17161-17844
Catalytic Approaches to Tackle Mixed Plastic Waste Challenges: A Review
Plastics are widely used materials in our daily lives and various industries due to their affordability and versatility. The massive production of plastic waste, however, has recently emerged as a pressing environmental concern across all media. To address this, emerging technologies are being explored for the sustainable valorization of postconsumer plastic wastes including thermochemical, physical, and catalytic processes aimed at transforming them into higher value-added products. However, the chemical recycling of mixed plastic wastes poses a formidable challenge due to the diverse array of monomers and catalyst systems involved, each employing distinct mechanisms. Complicating matters further is that contaminants reduce catalytic efficacy, requiring rigorous and labor-intensive separation and purification processes to extract individual plastic streams from practical plastic waste mixtures. Consequently, the majority of such mixtures often end up in incineration and landfills, perpetuating environmental and societal challenges, such as leachate, carbon dioxide emissions, and other air pollutants. This review will introduce current technical developments available for recycling practical plastic waste mixtures through catalytic processes. The current challenges in process performance, low selectivity of the desired products, and catalyst deactivation from the catalysis of plastic waste mixtures are also discussed. Promising approaches to overcome the problems are suggested in future research directions.
https://pubs.acs.org/doi/10.1021/acs.langmuir.4c01303
Image created by minjeong Kim / Nanosphere